Liquid Rocket Engine

WBS Item Name:

Engine Globals

Production Rate per Year	30	
Production Quantity	1	
QNHA (# engine/system)	1	
Contingency Percentage	0	
Program Support Percentage	0	
Fee Percentage	0	

Development

Hardware Development

Engine Design and Manufacturing Maturity

<u>Factor</u>	Representative <u>Engine</u>	Maturity Definition
 1.90	SSME	New design/manufacturing, state of art being advanced or multiple design or material and process paths required to reach goals.
 1.30		New design, different from established product line.
		Requires in-house development of new materials & process
 1.00	F-1, J-2	New design, different from established product line. Uses existing materials.
 0.90	J-2S	New design, within the established product line, continuation of existing state of art.
0.60		Extensive modifications to an existing design.
 0.20	RS-27, MA-5A	Simple modification to an existing design.
	,,	r

Engine Certification Process Improvement Factor

Factor	Representative <u>Engine</u>	Maturity Definition
 4.20	F-1, J-2	Full qualification of components and engine system, formal reliability demonstration, heavy reliance on testing to resolve failures and evaluate different design concepts, customer-originated requirement changes, engine block changes.
 1.00		Similarity rationale, formal reliability demonstration.
 0.50	SSME	Design verification system, recertification of reliability demonstration.
 0.20	DS-27, MA-5A	Design verification system, recertification of previous engine, TQM.

Engine Cycle & Internal Environment Complexity

<u>Factor</u>	Representative <u>Engine</u>	Cycle Description
 1.20 1.00 0.80 0.70	J-2S F-1, J-2, RS-27, MA-5A	Staged Combustion (two 'mixed' preburners) Hybrid Gas Generator Expander
 0.60	SSME	Tap-off

Development Engine Fab Time Span (Years) 3

Test Labor

Test Labor Process Improvement Factor

	<u>Factor</u>	Representative <u>Engine</u>	Process Description
	1.00 0.20	F-1, J-2, SSME New Engines	Business as usual Improved testing/post testing procedures and manpower utilization
Test	Frequency	(Number of Test per Month) Test Reduction Factor	30 1

Design Engineering Process Improvement Factor

<u>Factor</u>	Representative <u>Engine</u>	Process Description
 1.00	F-1, J-2	No CAD, CFD, little design automation, mostly handbooks, templates.
 0.44	SSME	Limited design automation, but CAD and some SFD.
 0.30	New Engines	Significant design automation, concurrent engineering, TQM.

Tooling, GSE, & STE Cost

Tooling Cost Improvement Factor

<u>Factor</u>	Tooling Description
 1.00	Apollo era type tooling
 0.60	Modern type tooling [Modular tooling fab. simplification (reduced parts count)]

Tooling Availability Factor

Factor

 1.00	New eng. or complete retooling or adv. fab. for majority of engine components
0.75	Partial use of existing tooling
 0 50	Now tooling design for simplified engine febrication

0.50 New tooling design for simplified engine fabrication

Tooling Description

0.25 Significant use of existing tooling

Summary Production Model

Cycle, Propellant, and Reusability Dependent Factor

Gas generator or tap-off, Expendable, LOX/RP-1
 Gas generator or tap-off, Expendable, LOX/LH2
 Gas generator or tap-off, Reusable, LOX/RP-1
 Gas generator or tap-off, Reusable, LOX/LH2
 Staged combustion/dual preburner, Expendable, LOX/RP-1
 Staged combustion/dual preburner, Expendable, LOX/LH2
 Staged combustion/dual preburner, Reusable, LOX/RP-1
 Staged combustion/dual preburner, Reusable, LOX/LH2
 Staged combustion/single preburner, Expendable, LOX/RP-1
 Staged combustion/single preburner, Expendable, LOX/LH2
 Staged combustion/single preburner, Reusable, LOX/RP-1
 Staged combustion/single preburner, Reusable, LOX/LH2
 Hybrid, Expendable, LOX/LH2
 Hybrid, Reusable, LOX/LH2

Producibility Improvement Factor

- ____ No producibility improvement, i.e. historical manufacturing environment.
- ____ Design simplification only, no manufacturing improvement.
- ____ Design simplification & mfg. improvement for derivative, expendendable engines.
 - _____ Clean sheet design of new, low perf., expendable eng. w/high producibility.

Manufacturing Automation Factor

- Conventional manufacturing environment
- _____ Fully Computer Integrated Mfg. (CIM) for rate > 50/yr; 0% govt. investment.
- _____ Fully Computer Integrated Mfg. (CIM) for rate > 50/yr; 50% govt. investment.
- _____ Fully Computer Integrated Mfg. (CIM) for rate > 50/yr; 100% govt. investment.

Vacuum Thrust (kbs) _____ (The suggested range is 20 Klbs to 2000 Klbs.)

Chamber Pressure (psi) _____ (The suggested range is 500 psi to 4000 psi.)

Ducts

- ____ Complex Oxygen/Hydrogen Ducts CER
- Complex Oxygen/RP-1 Ducts CER
- Simple Oxygen/RP-1 Ducts CER
- Known Cost CER

Weight _____ lbs _____ kgs

Quantity per Engine 1

Known TFU Cost in 99\$ M

NWODB Adjustment Factors

Manufacturing Support Labor

- ____ Historical Support Factor
- ____ Manufacturing Support Improvements
- ____ Design and Fabrication Improvements
- **Factory of the Future Environment**

- ____ Moderate Level of Outsourcing
- ____ Retain Strategic Work In-House
- ____ Most Work Outsourced
- ____ Work Done Mostly In-House

Gimbals

____ Gimbal CER ____ Known Cost CER

Weight _____ lbs _____ kgs

Quantity per Engine 1

Known TFU Cost in 99\$ M

NWODB Adjustment Factors

Manufacturing Support Labor

- ____ Historical Support Factor
- ____ Manufacturing Support Improvements
- **Design and Fabrication Improvements**
- **____** Factory of the Future Environment

- ____ Moderate Level of Outsourcing
- ____ Retain Strategic Work In-House
- Most Work Outsourced
- ____ Work Done Mostly In-House

Main Injector Assemblies

- Complex Injector CER Doublet Injector CER
- Known Cost CER

Weight	lbs	kgs
weight	105	Kgs

Quantity per Engine 1

Known TFU Cost in 99\$ M

NWODB Adjustment Factors

Manufacturing Support Labor

- Manufacturing Support Improvements
- ____ Design and Fabrication Improvements
- **_____** Factory of the Future Environment

- ____ Moderate Level of Outsourcing
- ____ Retain Strategic Work In-House
- ____ Most Work Outsourced
- ____ Work Done Mostly In-House

Main Valves

- ____ Oxygen/Hydrogen Valves CER
- ____ Oxygen/RP-1 Valves CER
- Known Cost CER

Weight _____ lbs _____ kgs

Quantity per Engine 1

Known TFU Cost in 99\$ M

NWODB Adjustment Factors

Manufacturing Support Labor

- _____ Historical Support Factor
- Manufacturing Support Improvements
- ____ Design and Fabrication Improvements
- ____ Factory of the Future Environment

- ____ Moderate Level of Outsourcing
- Retain Strategic Work In-House
- Most Work Outsourced
- ____ Work Done Mostly In-House

Thrust Chamber Assemblies

- **____** Channel Construction CER Tubular Construction CER
- Known Cost CER

Weight _____ lbs _____ kgs

Quantity per Engine 1

Known TFU Cost in 99\$ M

NWODB Adjustment Factors

Manufacturing Support Labor

- Manufacturing Support Improvements
- ____ Design and Fabrication Improvements
- **_____** Factory of the Future Environment

- _____ Moderate Level of Outsourcing
- ____ Retain Strategic Work In-House
- ____ Most Work Outsourced
- ____ Work Done Mostly In-House

Turbopumps

- ____ Torque Driven CER
- Weight Driven CER
- ____ Known Cost CER

Weight _____ lbs _____ kgs

Quantity Per Engine 1

Known TFU Cost in 99\$ M

Number of Key Parts

Impellars (Main & Kick)	1	
Inducers	1	
Crossovers (Between Stages)	0	
Volutes (Main & Kick, Double Entry Counts as 2)	1	
Turbine Rotors	2	
Turbine Stators (Turbine Nozzle)	2	
Purge Seals	1	
Turbine Inlet Manifold	0	
Turbine Exit Manifold	0	
Shafts (One per T/P to Account for Bearing and Seal Set)	1	
Enter –1 if Turbine and Pump Fluids are the Same, 0 if not	0	
Total	9	

NWODB Adjustment Factors

Manufacturing Support Labor

- Historical Support Factor
- Manufacturing Support Improvements
- Design and Fabrication Improvements
- _____ Factory of the Future Environment

- ____ Moderate Level of Outsourcing
- _____ Retain Strategic Work In-House
- ____ Most Work Outsourced

____ Work Done Mostly In-House

Preburner/Gas Generator Injector Assemblies

- Coaxial Injector CER
 Doublet Injector CER
- Known Cost CER

Weight	lbs	kgs

Quantity per Engine 1

Known TFU Cost in 99\$ M

NWODB Adjustment Factors

Manufacturing Support Labor

- ____ Historical Support Factor
- Manufacturing Support Improvements
- **Design and Fabrication Improvements**
- ____ Factory of the Future Environment

- ____ Moderate Level of Outsourcing
- ____ Retain Strategic Work In-House
- ____ Most Work Outsourced
- ____ Work Done Mostly In-House